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Abstract

The dynamics of linearly elastic, imperfect rings vibrating in their own plane is considered in this paper. Imperfections

are modeled as perturbations of the uniform linear mass density and bending stiffness of a perfect ring. A perturbation

expansion and a spectral representation are employed, and a variational formulation of the vibration problem is

obtained.

A linear theory is deduced by retaining only the leading-order terms in the variational formulation. The linear theory

yields simple, closed-form expressions for the eigenfrequencies and the modal shapes, which are accurate when the

imperfections are sufficiently small. An enhanced, nonlinear theory is also derived, which is accurate even when the ring

imperfections are not small: in this case, an iterative solution procedure is developed.

The proposed theories are validated by considering some case-study problems and using the Ritz–Rayleigh solution as a

benchmark.

Finally, the linear theory is applied to the frequency trimming problem of an imperfect ring. A simple, closed-form

expression for the trimming masses is presented, valid for trimming any selected number of eigenmodes.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Axisymmetric structures are commonly used in engineering applications, as turbine-bladed disks, satellite
antennae, bells, stator–rotor assemblies in electrical machinery, vibrating ring gyroscopes, and so on. Due to
the periodicity they possess, these structures exhibit degenerate pairs of spatially harmonic eigenmodes at the
same frequency. It is well known that when structural irregularities are present, destroying the symmetry of the
structure, the pairs of eigenfrequencies, coincident in the perfect symmetric case, split into two different values.
In many cases, e.g., for vibrating ring gyroscopes [1,2,10] where a strong resonant coupling between two
modes is required, the frequency split is a drawback effect and must be reduced with a correction procedure
known as frequency trimming. Moreover, the eigenmodes of a structure with imperfections deviate from the
sinusoidal shape: indeed, they present a local increase of the vibration amplitude, leading to an increase of the
dynamical load acting on the vibrating structure. This phenomenon, known as vibration localization, may
lead to fatigue failure [3,4]. For these reasons it is useful to have simple dynamical models able to take
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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into account the presence of imperfections and to predict the consequent frequency split and localization
phenomenon.

The attention is focused here on the vibrations of linearly elastic imperfect rings. Many papers can be found
in the literature dealing with a quantitative analysis of the frequency split occurring in these structures
(e.g., Refs. [5,6] and the references cited therein). Diverse causes of imperfections have been considered
by researchers and will be briefly summarized in what follows. In Ref. [7] a ring with variable cross-section
was considered, and the Ritz–Rayleigh method was used to find out the eigenfrequencies; a closed-form
expression for the lower natural frequency was obtained using a first-order approximation. In Ref. [5] a
simple model for the frequency split of slightly imperfect rings was developed, based on the Ritz–Rayleigh
method together with the simplifying assumption that the eigenmodes of the imperfect ring are still
spatially harmonic. The imperfections were assumed to be generated by added masses or radial and
torsional springs. Closed-form expressions for all the eigenfrequencies of the imperfect ring were obtained.
An extension to the case of a distributed mass added to the ring was proposed in Ref. [8], and a study
on the statistics of frequency splitting under various added random mass distributions was performed.
In Ref. [6] in-plane profile variations were taken into account as a cause of frequency splitting. In Ref. [9] a
ring comprised by an anisotropic material (crystalline silicon), implying a dependence of the Young modulus
on the angular variable, was studied. According to the cited literature, while a great effort has been spent for
the evaluation of the frequency split in imperfect rings, less attention has been devoted to the analysis of the
modal shapes.

In this paper, a theory for the dynamics of linearly elastic imperfect rings vibrating in their own
plane is proposed, yielding simple, closed-form expressions for both the eigenfrequencies and the modal
shapes of the ring. Quite general imperfections are taken into account, by allowing the linear mass density and
the in-plane bending stiffness of the ring to differ by a small perturbation, depending on the angular variable,
from a uniform value relevant to a perfect ring. The Euler–Bernoulli theory is adopted, for the sake of
simplicity, to build a dynamical model of the structure, under the assumption that the ring is axially
inextensible. Generalizations of the present results to different kinematical models would be straightforward,
if needed.

A perturbation expansion is performed: each eigenmode of the imperfect structure is represented by adding
an unknown perturbation, depending on the angular variable, to the corresponding spatially harmonic
eigenmode relevant to the perfect structure.

When only the leading-order terms are retained in the governing functional, a linear theory is obtained,
yielding closed-form solutions for the modal eigenfrequencies and the modal shapes. An enhanced nonlinear
theory is also derived by retaining higher-order terms, and an iterative procedure is proposed in order to find
the corresponding solution.

For the sake of validation, some case-study problems are considered, and the results provided by the
proposed theories are compared to the ones obtained by employing the Ritz–Rayleigh method. It turns out
that the linear theory is accurate when imperfections are sufficiently small; for larger imperfections the
enhanced theory may be used, and very accurate results are obtained after 2 or 3 iterations only.

Finally, the proposed theory is applied to the trimming problem of an imperfect ring. For the sake of
comparison, the imperfect ring considered in Ref. [11] is studied and the first two elastic modes are
trimmed by using the linear theory presented herein. This theory turns out to be a valid and simple
tool for solving the trimming problem, since it yields, for any choice of modes to be trimmed,
closed-form expressions of the trimming masses to be placed at arbitrary equally spaced positions.
The quality of the achieved trimming is tested by evaluating the residual percentage mistuning between
couples of trimmed eigenfrequencies, via the Ritz–Rayleigh method. Finally, a rule found in Ref. [12],
concerning invalid combinations of masses and modes for single- or dual-mode trimming, is here generalized
to multi-mode trimming.

2. Dynamical model of the ring

A model of the dynamical behavior of a circular ring is here derived, based on the classical Euler–Bernoulli
theory. The ring has radius R and is assumed to be linearly elastic. Let r and K denote, respectively, its linear
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Fig. 1. Schematic representation of the ring.

P. Bisegna, G. Caruso / Journal of Sound and Vibration 306 (2007) 691–711 693
mass density and in-plane bending stiffness. Due to the presence of imperfections, r and K are functions of the
angular variable y. Let u and v be, respectively, the tangential and radial displacement of a point of the ring
axis at the angular position y, as shown in Fig. 1.

It is assumed that the ring is axially inextensible, i.e. the circumferential strain � vanishes. Accordingly, the
following condition prevails:

� ¼
1

R

qu

qy
þ v

� �
¼ 0, (1)

so that v ¼ �qu=qy. The change of curvature is given by the well-known expression:

Dw ¼
1

R2

qu

qy
�

q2v

qy2

� �
¼

1

R2

qu

qy
þ

q3u

qy3

� �
. (2)

Accordingly, the Hamiltonian functional H describing the free vibrations of the ring is

H ¼
1

2

Z t

0

Z 2p

0

r
qu

qt

� �2

þ �
q2u
qyqt

� �2
" #

Rdydt�
1

2

Z t

0

Z 2p

0

K

R4

qu

qy
þ

q3u

qy3

� �2
Rdydt, (3)

where t is the time. The stationary condition for the functional (3) yields the dynamical equilibrium equation
of the ring, which reads as follows:

R
q2

qt2
ru�

q
qy

r
qu

qy

� �� �
�

q
qy
þ

q3

qy3

� �
K

R3

qu

qy
þ

q3u

qy3

� �� �
¼ 0. (4)

Eq. (4) admits solutions harmonic in time, i.e. of the form:

uðy; tÞ ¼ uðyÞeiot, (5)

where o is the eigenfrequency, i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit, and, with a slight abuse of notation, uðyÞ
denotes the vibration amplitude. Accordingly, the dynamical equilibrium equation is recast as follows:

�o2R ru�
q
qy

r
qu

qy

� �� �
�

q
qy
þ

q3

qy3

� �
K

R3

qu

qy
þ

q3u

qy3

� �� �
¼ 0. (6)

For later usage, a weak version of Eq. (6) is presented. It is given by

�o2

Z 2p

0

r ucþ
qu

qy
qc
qy

� �
Rdyþ

Z 2p

0

K

R4

qu

qy
þ

q3u

qy3

� �
qc
qy
þ

q3c

qy3

� �
Rdy ¼ 0 (7)

for every c, test function belonging to the space H3
#ðRÞ, composed of square integrable functions which are

2p-periodic and have up to the third weak square integrable derivative with respect to y. The solution u is
searched for in the same function space H3

#ðRÞ.
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2.1. Perfect ring: degenerate eigenfrequencies and modal shapes

If the ring is perfect, then r and K do not depend on y, and are denoted by ro and Ko, respectively.
Analogously, the function uðyÞ is denoted by uoðyÞ. Eq. (6) is simplified as follows:

�o2Rro uo �
q2uo

qy2

� �
�

Ko

R3

q2uo

qy2
þ 2

q4uo

qy4
þ

q6uo

qy6

� �
¼ 0. (8)

For every natural number n 2 N, a solution of Eq. (8) is given by

uonðyÞ ¼ 2Ao;n cosðnyþ jnÞ ¼ Uo;ne
iny þUo;�ne

�iny, (9)

provided that the eigenfrequency o, denoted by oon, is given by the following well-known formula:

o2
on ¼

Ko

roR4

n2ð1� n2Þ
2

1þ n2
. (10)

Here

Uo;n ¼ Ao;ne
ijn ; Uo;�n ¼ Uo;n; (11)

an overline denotes the complex conjugate, and Ao;n 2 Rþ, jn 2 ½0; 2pÞ are arbitrary constants. In the
literature, the eigenmode uonðyÞ is known as nth modal shape, n is the number of its nodal diameters, and jn is
its phase orientation. It is recalled that for every nX1, two independent eigenmodes uon exist, corresponding to
the same eigenfrequency oon: hence, they are referred to as degenerate eigenmodes. For n ¼ 0, only a single
independent eigennode can be found. The eigenmodes relevant to n ¼ 0 and 1 correspond to rigid motions
of the ring, and their eigenfrequencies are zero. In the following, the eigenmodes with nX2 are considered.
They have nonzero eigenfrequencies and imply deformations of the ring, so that they are known as elastic
eigenmodes.

The modal shapes of the perfect ring corresponding to n ¼ 2; 3; 4; 5 are reported in Fig. 6 with dashed/blue
lines.

3. Imperfect ring: eigenfrequencies and modal shapes

It is well known that when even small imperfections are added to a perfect ring, thus destroying the
rotational periodicity of the structure, the coinciding eigenfrequencies (10), relevant to couples of degenerate
eigenmodes (9), split in two different values. Moreover, their corresponding eigenmodes deviate from the
sinusoidal shape (9).

In this section, a model is presented, leading to analytical expressions of the eigenfrequencies and modal
shapes of imperfect rings for quite general imperfection conditions.

3.1. Perturbation expansion

The presence of imperfections is accounted for as follows:

r ¼ ro þ drðyÞ; K ¼ Ko þ dKðyÞ, (12)

where drðyÞ and dKðyÞ are, respectively, 2p-periodic perturbations of the mass density ro and the bending
stiffness Ko of the perfect ring. Accordingly, the eigenmodes unðyÞ and the corresponding eigenfrequencies on

of the imperfect ring are represented as

unðyÞ ¼ uonðyÞ þ dunðyÞ; on ¼ oon þ don, (13)

where dunðyÞ, here denoted as ‘‘harmonic distortion’’, is an unknown perturbation of the modal shape uonðyÞ of
the perfect ring, accounting for the vibration localization, and don is the unknown shift of the corresponding
modal eigenfrequency oon.
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By substituting the positions (12) and (13) into the weak formulation (7), the following variational equation
is obtained:

� ðoon þ donÞ
2

Z 2p

0

ðro þ drÞ ðuon þ dunÞcþ
qðuon þ dunÞ

qy
qc
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� �
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0
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qy3

� �
ðuon þ dunÞ

qc
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þ

q3c

qy3

� �
Rdy ¼ 0 ð14Þ

for every c 2 H3
#ðRÞ. For each nX2, two different solutions are expected, since the eigenmode degeneracy

disappears due to imperfections: this is the frequency-splitting phenomenon. Hence, also the phase orientation
jn of the nth harmonic component of unðyÞ must be regarded as an unknown quantity [5], which will be
uniquely determined in what follows accounting for the presence of imperfections.

3.2. Linear theory

In order to develop closed-form expressions for the modal frequency shift don and the harmonic distortion
dun, a linearized version of Eq. (14) is here derived. It is obtained by neglecting higher-order terms in Eq. (14):Z 2p

0

�o2
onro duncþ

qdun

qy
qc
qy

� �
þ
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þ
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qy3

� �
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þ
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qy3
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Rdy

¼

Z 2p

0

ðo2
ondrþ 2rooondonÞ uoncþ
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qy
qc
qy
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Rdy

�

Z 2p

o

dK

R4
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qy
þ

q3uon

qy3

� �
qc
qy
þ

q3c

qy3
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Rdy ð15Þ

for every c 2 H3
#ðRÞ.

The mass–density perturbation drðyÞ and the bending–stiffness perturbation dKðyÞ are represented by using
Fourier series expansions:

drðyÞ ¼
Xþ1

k¼�1

fdrgk e
iky; dKðyÞ ¼

Xþ1
k¼�1

fdKgk e
iky, (16)

where fcg is the vector containing the Fourier coefficients of a function cðyÞ, and fcgk is its kth component.
Of course, it turns out that fcg�k ¼ fcgk. Also the unknown harmonic distortion dunðyÞ is represented by using
its Fourier series expansion:

dunðyÞ ¼
Xþ1

k¼�1

fdungk e
iky. (17)

Without loss of generality, we may assume that

fdungn ¼ 0, (18)

since the phase orientation jn is here assumed as an unknown quantity.
The Fourier series expansions (16) and (17) are substituted in Eq. (15). The test function c is taken as

follows:

c ¼ e�iky; k 2 N. (19)

After simple algebra, the following equation is obtained, for k 2 Nnfng:

fdungk

Ao;n
¼

1

f kn

1þ nk

1þ n2
eijn
fdrg�nþk

ro

þ
1� nk

1þ n2
e�ijn
fdrgnþk

ro

� �

�
gkn

f kn

eijn
fdKg�nþk

Ko

� e�ijn
fdKgnþk

Ko

� �
, ð20Þ
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where

gkn ¼
kð1� k2

Þ

nð1� n2Þ
; hkn ¼

1þ k2

1þ n2
; f kn ¼ g2

kn � hkn. (21)

Eq. (20) yields the Fourier coefficients of the harmonic distortion dun. At the authors’ knowledge, closed-form
expressions for the eigenmodes uon þ dun of the imperfect ring were not available in the literature.

On the other hand, the following equation is obtained for k ¼ n:

0 ¼ 2eijn
don

oon

þ eijn
fdrg0
ro

þ
1� n2

1þ n2
e�ijn
fdrg2n

ro

� �
� eijn

fdKg0
Ko

� e�ijn
fdKg2n

Ko

� �
. (22)

This equation yields:

don

oon

¼ �
1

2

fdrg0
ro

þ
1

2

fdKg0
Ko

�
1

2
e�2ijn

1� n2

1þ n2

fdrg2n

ro

þ
fdKg2n

Ko

� �
. (23)

Since the left-hand side and the first two terms at the right-hand side of the previous equation are real, also the
third term at the right-hand side must be real. Thus, it follows that

jn ¼
1

2
arg

1� n2

1þ n2

fdrg2n

ro

þ
fdKg2n

Ko

� �
þ l

p
2
; l ¼ 0; 1. (24)

Hence

don

oon

¼ �
1

2

fdrg0
ro

þ
1

2

fdKg0
Ko

�
ð�1Þl

2

1� n2

1þ n2

fdrg2n

ro

þ
fdKg2n

Ko

����
����; l ¼ 0; 1, (25)

where j � j denotes the modulus. As expected, it turns out that for each nX2 (elastic modes) there are two sets
of solutions of Eq. (15), denoted by fdon;l ;jn;l ; dun;lg, l ¼ 0; 1. Hence, the frequency split (or mistuning)
relevant to the mode n turns out to be

Don ¼ ðoon þ don;1Þ � ðoon þ don;0Þ ¼ oon

1� n2

1þ n2

fdrg2n

ro

þ
fdKg2n

Ko

����
����. (26)

3.3. Enhanced theory

When the imperfections affecting the ring are not sufficiently small, the first-order closed-form solution
given in the previous section may not be very accurate. Accordingly, it may be necessary to keep higher-order
terms in (14), in order to improve the accuracy of the solution. To this end, the representation (16) of dr and
dK and the representation (17) of dun are substituted in Eq. (14), and all the terms appearing in the resulting
equation are retained. Taking the test function c defined in Eq. (19) and using Eq. (18), the following equation
is obtained after simple algebra, for k 2 Nnfng:

ðg2
kn � hknb

2
nÞ
fdungk

Ao;n
¼ b2n

1þ nk

1þ n2
eijn
fdrg�nþk
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þ
1� nk

1þ n2
e�ijn
fdrgnþk

ro

� �

þ
b2n

1þ n2

fdrg
ro

�
fdung
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� 	
k

� ik
fdrg
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�
fqdun=qyg

Ao;n

� 	
k

� �

� gkn eijn
fdKg�nþk

Ko

� e�ijn
fdKgnþk

Ko

� �

þ
i gkn

nð1� n2Þ

fdKg

Ko

�
fqdun=qyg þ fq

3dun=qy
3
g

Ao;n

� 	
k

, ð27Þ
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where bn ¼ 1þ don=oon and ffag � fbggk denotes the kth component of the convolution product between the
vectors fag and fbg, defined as follows:

ffag � fbggk:¼
Xþ1

j¼�1

fagj fbgk�j. (28)

Moreover, fqc=qygk ¼ ikfcgk, for a function cðyÞ. Taking k ¼ n, the following equation is obtained:

0 ¼ ðb2n � 1Þeijn þ b2n eijn
fdrg0
ro

þ
1� n2

1þ n2
e�ijn
fdrg2n

ro

� �

þ
b2n

1þ n2

fdrg
ro

�
fdung

Ao;n

� 	
n

� in
fdrg
ro

�
fqdun=qyg

Ao;n

� 	
n

� �

� eijn
fdKg0

Ko

� e�ijn
fdKg2n

Ko

� �
þ

i

nð1� n2Þ

fdKg

Ko

�
fqdun=qyg þ fq

3dun=qy
3
g

Ao;n

� 	
n

. ð29Þ

The system of Eqs. (27), (29) is nonlinear and fully coupled: thus, explicit solutions for the unknowns don, jn

and fdung are not easily computed. Consequently, an iterative procedure is here adopted using, as initial guess,
the values of don;l , jn;l and fdun;lg, l ¼ 0; 1, given by the linear solution presented in Eqs. (25), (24) and (20),
respectively. The iterative procedure is performed as follows. At the jth iteration, for l ¼ 0; 1,
�
 don and jn are updated by solving the first-order Taylor approximation of Eq. (29), after giving fdung the
value obtained from the previous iteration.

�
 Then, the vector fdung is updated by using Eq. (27), after giving don and jn the values computed above, and
fdung appearing on the right-hand side of Eq. (27) the values obtained from the previous iteration.

Needless to say that the series at the right-hand side of Eq. (28), defining the convolution products appearing
in Eqs. (27) and (29), must be truncated to a finite number of terms. However, since du 2 H3

#ðRÞ, fdugk rapidly
decays as jkj ! þ1 (in particular,

Pþ1
k¼�1 jk

3
fdugkj

2oþ1), so that only few tens of terms are usually
sufficient to obtain a satisfactory result. Numerical evidence reported in Section 5 shows the convergence and
effectiveness of this computational scheme.

3.4. Numerical solution

In order to have a benchmark for validating the theories proposed in this paper, the Ritz–Rayleigh method
is used to numerically solve the variational equation (7). To this end, the nth eigenfunction u in Eq. (7) is
represented as

unðyÞ ¼ a0 þ
XF

k¼1

2 ak cosðkyÞ �
XF

k¼1

2 bk sinðkyÞ, (30)

where F is a fixed natural number and, for each n 2 N, a0; ak; bk, k ¼ 1 . . .F are the real scalar unknowns of
the resulting discrete problem, related to the complex Fourier coefficients of un by the well-known equations:
a0 ¼ fung0, ak ¼ ReðfungkÞ and bk ¼ ImðfungkÞ.

For the sake of completeness, also a finite-element formulation has been derived, based on a two-node
curvilinear-element discretization of the ring. The generic unknown modal shape un is interpolated by means
of its nodal values, and the nodal values of its first and second derivatives, by using the following shape
functions:

1; y; cosðyÞ; sinðyÞ; y cosðyÞ; y sinðyÞ, (31)

which guarantee exact integration of constant and sinusoidal functions (i.e. exact reconstruction of
rigid motions) and global continuity up to the second derivative, so that the interpolated functions are in the
space H3

#ðRÞ.
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The two described approaches (Ritz–Rayleigh and finite-element methods) yield the same results, up to
numerical round off. Accordingly, only results provided by the Ritz–Rayleigh approach will be reported in
what follows.
4. Case-study problems

In this section two case-study problems of technological interest are presented, schematically shown in Fig.
2. Explicit solutions are derived for the split eigenfrequencies and eigenmodes of the imperfect ring, by
employing the linear theory described in Section 3.2.
4.1. Lumped masses added to the ring

The imperfect ring shown in Fig. 2(a) is here considered. Its imperfection is due to p lumped masses mj

attached to the ring at angular positions y ¼ Yj, j ¼ 1 . . . p. Accordingly, dKðyÞ ¼ 0, whereas

drðyÞ ¼
Xp

j¼1

mj

R
dYj
ðyÞ, (32)

where dYj
denotes the Dirac delta function supported at Yj. The Fourier coefficients of the mass density

perturbation dr are given by

fdrgk ¼
Xp

j¼1

mj

2pR
e�ikYj . (33)

Eq. (24) yields

jn;l ¼ �
1

2
arctan

Pp
j¼1mj sin 2nYjPp
j¼1mj cos 2nYj

þ l
p
2
; l ¼ 0; 1, (34)

whereas from Eq. (25) it turns out that

don;l

oon

¼ �
1

2Mo

Xp

j¼1

mj � ð�1Þ
l 1� n2

1þ n2

Xp

j¼1

mje
�i2nYj

�����
�����

 !
; l ¼ 0; 1, (35)

where Mo ¼ 2pRro is the mass of the perfect ring. Expression (34) of the phase orientation jn;l is equivalent to
expression (7) of cn;l derived in Ref. [11], by noting that cn;l ¼ �jn;l=n. The frequency shift in Eq. (35)
coincides with the one given by the linearized version of Eqs. (11) and (12) of Ref. [11].

Finally, from Eq. (20), for k 2 Nnfng, the Fourier coefficients of dun;l are obtained:

fdun;lgk

Ao;n
¼

2

Moð1þ n2Þf kn

Xp

j¼1

fmje
�ikYj ½cosðnYj þ jn;lÞ þ ikn sinðnYj þ jn;lÞ�g (36)

with jn;l given in Eq. (34).
j
O

mj

O (1+ )Ko

Ko

�
� �

Fig. 2. (a) Lumped masses mj added to the ring at angular positions Yj , j ¼ 1 . . . p. (b) Massless stiffener applied to the ring, spanning the

arc ½�Y=2;Y=2�, locally increasing the bending stiffness by a quantity gKo.
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In the special case of just one lumped mass m added at the angle Y, Eqs. (34)–(36) reduce to

jn;0 ¼ �nY; jn;1 ¼ �nYþ
p
2
;

don;0

oon

¼ �
m

Moð1þ n2Þ
;

don;1

oon

¼ �
mn2

Moð1þ n2Þ
;

fdun;0gk

Ao;n
¼

2me�ikY

Moð1þ n2Þf kn

;
fdun;1gk

Ao;n
¼

2mikne�ikY

Moð1þ n2Þf kn

:

(37)

4.2. Massless stiffener applied to the ring

The imperfect ring shown in Fig. 2(b) is here considered. The imperfection is due to a stiffener spanning the
arc ½�Y=2;Y=2�, having vanishing mass and constant bending stiffness, thus locally increasing the in-plane
bending stiffness Ko of the ring to the value ð1þ gÞKo. As a consequence, drðyÞ ¼ 0, whereas

dKðyÞ ¼ gKo for y 2 ½�Y=2;Y=2�; dKðyÞ ¼ 0 otherwise. (38)

The Fourier coefficients of the perturbation dK are given by

fdKgk ¼
gKo

kp
sin

kY
2

. (39)

Eq. (24) yields

jn;l ¼ l
p
2
; l ¼ 0; 1, (40)

whereas from Eq. (25) it is obtained:

don;l

oon

¼
gY
4p

1� ð�1Þl
sinðnYÞ

nY

� �
; l ¼ 0; 1. (41)

The Fourier coefficients of dun;l are obtained from Eq. (20), for k 2 Nnfng, and read as follows:

fdun;lgk

Ao;n
¼ �

eilp=2gY
2p

gkn

f kn

sin½ð�nþ kÞY=2�
½ð�nþ kÞY=2�

� ð�1Þl
sin½ðnþ kÞY=2�
½ðnþ kÞY=2�

� 	
; l ¼ 0; 1. (42)

5. Validation and numerical simulations

In this section, a validation of the models proposed in Sections 3.2 and 3.3 is performed by comparing their
predictions to the ones supplied by the accurate Ritz–Rayleigh method described in Section 3.4.

For the sake of comparison, the perfect elastic ring considered in Refs. [5,11] is here chosen for the
numerical simulations. The ring is comprised by a material with Young modulus E ¼ 206GPa, mass density
m ¼ 7850 kg=m3 and Poisson’s ratio n ¼ 0:3. The ring radius is R ¼ 300mm, its thickness is h ¼ 5mm and
its axial length is b ¼ 100mm. Accordingly, the linear mass density ro ¼ mbh is 3.925 kg/m, the bending
stiffness, assuming a plane strain condition, is Ko ¼ Eh3=½12ð1� n2Þ� ¼ 235:81Nm2 and the total mass is
Mo ¼ 2pRro ¼ 7:3984 kg. The modal eigenfrequencies of the perfect ring are reported in Table 1, evaluated
according to Eq. (10), and are coincident with the ones given in Table E1 of Ref. [11].
Table 1

Modal frequencies f on ¼ oon=ð2pÞ of the perfect ring

n 2 3 4 5

f on (Hz) 36.78 104.03 199.46 322.57
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In order to perform the validation of the proposed models, the following cases of imperfection are
considered:
(i)
 a single mass m applied to the ring at y ¼ 0� (this case is taken from Table 1 of Ref. [5]);

(ii)
 a stiffener spanning the arc ½�Y=2;Y=2�, with Y ¼ 40�, applied to the ring, locally increasing the bending

stiffness by a percentage g;

(iii)
 three imperfection masses applied to the ring at the angles Y1 ¼ 0�;Y2 ¼ 20� and Y3 ¼ 70�. Their values

are, respectively, m1 ¼ 0:1 kg, m2 ¼ 0:2 kg, m3 ¼ 0:3 kg, globally amounting to about 8.1% of the perfect
ring mass (this case is taken from Table 4 of Ref. [5] and Table 3 of Ref. [11]).
5.1. Frequency split

The frequency shifts and splits relevant to the above cases of imperfection are here computed by using the
proposed theories and are compared to the ones obtained by using the Ritz–Rayleigh method. Moreover, for
the cases (i) and (iii) of imperfection, results from Refs. [5,11] are also available. The following acronyms are
introduced:
�
 LT refers to the linear theory presented in Section 3.2;

�
 ET-2 and ET-3 denote the enhanced theory reported in Section 3.3 (results obtained after 2 and 3 iterations,

respectively);

�
 FT denotes the theory proposed in Refs. [5,11,12];

�
 RR denotes the Ritz–Rayleigh method described in Section 3.4.

Case (i) [resp., case (ii)] is analyzed in Fig. 3 and Table 2 [resp., Fig. 4 and Table 3]. Mode numbers
n ¼ 2; 3; 4; 5 are considered.

Fig. 3 [resp., Fig. 4] shows the frequency shifts don;l as a function of the ratio m=Mo [resp., of the percentage
g]. Tables 2 and 3 report the relative error on the frequency shifts with respect to the RR solution, defined as
follows:

errðdon;lÞ ¼
don;l � doRR

n;l

doRR
n;l

�����
�����. (43)

As expected, in case (i) (Fig. 3) the frequency shifts are negative and decrease with increasing m, whereas in
case (ii) (Fig. 4) they are positive and increase with increasing g. The corresponding splits increase with
increasing m or g. According to Eqs. (26), (33) and (39), they exhibit a slight [resp., marked] dependence on n

in case (i) [resp., case (ii)]. According to the LT model, the frequency splits and shifts linearly depend on the
abscissa value (i.e., m=Mo or g).

It turns out that both the LT and FT models are in good agreement with the RR model for sufficiently
small perturbations. Improved accuracy for larger perturbations is allowed by the enhanced ET model,
even with only 2 or 3 iterations. This result can be quantitatively appreciated by looking at Tables 2 and 3.
In particular, for m=Mo ¼ 1% [resp., g ¼ 4%] the LT and FT models supply a relative error of the order of
some percent, whereas ET-2 guarantees an error below 0.2%, and ET-3 yields an error below 0.01%.
Moreover, the ET-2 [resp., ET-3] model yields sufficiently [resp., very] accurate results even for m=Mo ¼ 5%
or g ¼ 20%.

Finally, Table 4, relevant to case (iii) of imperfection, reports the modal frequencies on;l ¼ oon þ don;l and
the phase orientations jn;0 corresponding to mode numbers n ¼ 2; 3; 4; 5 (according to LT and FT [5,11]
methods, it turns out that jn;1 ¼ jn;0 þ 90�). These results show that the LT and FT models are
sufficiently accurate in predicting the eigenfrequencies even in this case; the phase orientations they
predict are the same, whereas the modal frequencies are slightly different from each other. The enhanced
theory with 3 iterations (ET-3), produces results which are almost coincident with the exact ones supplied by
the RR method.
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Fig. 3. Normalized frequency shift don;l=oon (%) vs. normalized lumped mass m=Mo (%) applied to the ring at y ¼ 0�. Different theories

adopted: - - LT, � - ET-2, � � � ET-3, — RR, �=� FT [5,11]. Lower- [resp., higher-] frequency split eigenmode l ¼ 0 [resp., l ¼ 1]: red/squares

[resp., blue/triangles]. Eigenmodes: (a) n ¼ 2; (b) n ¼ 3; (c) n ¼ 4; (d) n ¼ 5.

Table 2

Relative error errðdon;lÞ (%) on the frequency shift with respect to the RR solution

m=Mo (%) Theory n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

1% LT 1.83 2.27 3.04 2.55 4.45 2.71 5.96 2.81

FT [5] 0.55 2.26 1.89 2.55 3.21 4.76 4.69 1.57

ET–2 2� 10�5 0.039 0.029 0.058 0.094 0.069 0.21 0.075

ET–3 1� 10�7 8� 10�4 4.9 � 10�4 0.0014 0.0029 0.0018 0.0097 0.0021

5% LT 9.22 11.3 15.6 12.7 23.3 13.6 31.7 14.0

FT [5] 3.76 10.2 7.95 12.7 15.3 12.0 23.3 12.7

ET–2 0.0015 0.96 0.83 1.44 2.84 1.72 6.59 1.89

ET–3 1� 10�4 0.09 0.08 0.17 0.49 0.22 1.71 0.26

Imperfection due to a lumped mass m, according to case (i). Eigenmodes n ¼ 2; 3; 4; 5: split eigenmode l ¼ 0 [resp., l ¼ 1] on the left [resp.,

on the right]. Different theories adopted (see text).
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Fig. 4. Normalized frequency shift don;l=oon (%) vs. percentage bending-stiffness increase g (%) due to a stiffener spanning the arc

[�20�; 20�]. Different theories adopted: - - LT, � - ET-2, � � � ET-3, — RR. Lower- [resp., higher-] frequency split eigenmode l ¼ 0 [resp.,

l ¼ 1]: red/squares [resp., blue/triangles]. Eigenmodes: (a) n ¼ 2; (b) n ¼ 3; (c) n ¼ 4; (d) n ¼ 5.

Table 3

Relative error errðdon;l Þ (%) on the frequency shift with respect to the RR solution

g (%) Theory n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

4% LT 3.72 2.20 3.68 1.62 3.52 1.21 1.20 3.18

ET–2 0.035 0.041 0.13 0.024 0.12 0.02 0.034 0.098

ET–3 0.0012 8.8 � 10�4 0.0051 4:6� 10�7 0.0043 5:7� 10�4 0.0013 0.0032

20% LT 18.5 11.0 18.3 8.10 17.6 5.97 5.73 16.0

ET–2 1.52 1.02 3.34 0.59 3.02 0.47 0.78 2.47

ET–3 0.27 0.11 0.63 0.057 0.55 0.067 0.15 0.41

Imperfection due to a massless stiffener increasing the bending stiffness of gKo, according to case (ii). Eigenmodes n ¼ 2; 3; 4; 5: split
eigenmode l ¼ 0 [resp., l ¼ 1] on the left [resp., on the right]. Different theories adopted (see text).
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Table 4

Phase orientations jn;0 (deg) and modal frequencies f n;l ¼ on;l=ð2pÞ (Hz), relevant to the imperfect ring of case (iii)

Theory n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

jn;0 f n;l jn;0 f n;l jn;0 f n;l jn;0 f n;l

LT �6.95 34.973 35.603 11.82 97.232 102.386 23.16 186.96 195.79 �4.14 304.29 314.70

FT [5,11] �6.95 35.096 35.656 11.82 97.832 102.423 23.16 188.02 195.89 �4.14 305.71 314.97

ET–2 �6.75 35.138 35.733 12.13 98.284 102.504 24.30 189.83 195.97 �2.76 308.89 315.46

ET–3 �6.73 35.139 35.727 12.14 98.203 102.490 24.30 189.21 195.98 �2.97 307.53 315.29

RR �6.74 35.139 35.728 12.14 98.216 102.492 24.29 189.35 195.98 �2.95 307.97 315.31

Eigenmodes n ¼ 2; 3; 4; 5: f n;0 [resp., f n;1] on the left [resp., on the right]. Different theories adopted (see text).

Table 5

Relative error errðun;lÞ (%) on the eigenmodes

m=Mo (%) n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

1% 0.013 0.033 0.067 0.042 0.18 0.046 0.35 0.048

5% 0.33 0.77 1.61 0.96 4.1 1.04 7.58 1.09

Imperfection due to a lumped mass m, according to case (i). Eigenmodes n ¼ 2; 3; 4; 5: split eigenmode l ¼ 0 [resp., l ¼ 1] on the left [resp.,

on the right]. LT model adopted in the computations.
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5.2. Modal shapes

The ability of the proposed theories to evaluate the modal shapes of an imperfect ring is here investigated.
To this end, the imperfection cases (i) and (ii) are considered, and the following relative error measure is
introduced:

errðun;lÞ ¼
kun;l � uRR

n;l k2

kuRR
n;l k2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPþ1
k¼�1jfun;lgk � fu

RR
n;l gkj

2Pþ1
k¼�1jfu

RR
n;l gkj

2

vuut , (44)

where k � k2 denotes the L2 norm over ½0; 2pÞ and the modal shape uRR
n;l supplied by the RR method is used as a

benchmark.
In Table 5 [resp., Table 6] the relative error relevant to mode numbers n ¼ 2; 3; 4; 5 is reported, for two

different values of m=Mo [resp., g]. They are computed using the LT model; the ET model supplies vanishing
errors (not reported), while no data are available for the FT model, based on the assumption that modal
shapes are unaffected by imperfections. In the considered cases, the LT model appears to be sufficiently
accurate for estimating the modal shapes of imperfect rings.

In order to study the vibration localization phenomenon due to the presence of imperfections, the following
total harmonic distortion (THD) index is introduced for each split eigenmode:

THD ¼
kdun;lk2

kuonk2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPþ1
k¼�1jfdun;lgkj

2

2A2
on

s
. (45)

This index measures the contribution of harmonics different from the fundamental one uon to the modal shape
un;l of the imperfect ring.

In Fig. 5 the THD index, evaluated using the LT model for mode numbers n ¼ 2; 3; 4; 5, is reported: panel
(a) refers to case (i) (lumped added mass), whereas panel (b) refers to case (ii) (added stiffener). Very similar
results, not reported, are obtained by using the ET or RR model. It turns out that imperfections imply an
appreciable harmonic distorsion, increasing with the increase of the mode number n. As an example, in the
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Table 6

Relative error errðun;lÞ (%) on the eigenmodes

g (%) n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

4% 0.15 0.14 0.32 0.31 0.27 0.25 0.22 0.20

20% 0.79 0.65 1.71 1.36 1.54 1.12 1.17 0.94

Imperfection due to a massless stiffener increasing the bending stiffness of gKo, according to case (ii). Eigenmodes n ¼ 2; 3; 4; 5: split
eigenmode l ¼ 0 [resp., l ¼ 1] on the left [resp., on the right]. LT model adopted in the computations.
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Fig. 5. Total harmonic distortion coefficient THD (%) vs. (a) normalized lumped mass m=Mo (%) applied to the ring at y ¼ 0, or vs. (b)

percentage bending-stiffness increase g (%) due to a stiffener spanning the angle [�20�; 20�]. Lower- [resp., higher-] frequency split

eigenmode l ¼ 0 [resp., l ¼ 1]: red/squares [resp., blue/triangles]. Eigenmodes: - - n ¼ 2, � - n ¼ 3, � � � n ¼ 4, — n ¼ 5. LT theory adopted in

the computations.
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case of lumped added mass, the THD index becomes quite large for the lower-frequency split eigenmode
(l ¼ 0), being in excess of 30% for mode number n ¼ 5 and for a mass ratio m=Mo44%.

Finally, in Fig. 6 the modal shapes un;l of an imperfect ring, evaluated by using the LT model (continuous/
red lines) and the RR model (black crosses), are compared and superimposed to the corresponding modes of
the perfect ring (dashed/blue lines). The ring is made imperfect according to case (iii). The presence of
harmonics different from the fundamental one is appreciable, and become significant for higher mode
numbers n. The related localization phenomenon is emphasized in Fig. 7, where the perturbations dun;l ¼

un;l � uon of the modal shapes are reported, with respect to a circular reference. A quantitative measure of this
phenomenon is given in Tables 7 and 8. Table 7 shows that the THD ranges from 10% to 30% when the mode
number n ranges from 2 to 5. Moreover, a satisfactory agreement between the LT and RR models can be
observed even in the present case, where the imperfection masses globally amount to about 8.1% of the perfect
ring mass. Table 8 shows what the harmonic content of the distortion dun;l is: it turns out that a significant
contribution is due to the harmonics fdun;lgk for 0pkpn� 1.
6. Trimming

Let an imperfect ring be assigned. As it was recalled above, its eigenmodes are not, in general, degenerate,
and frequency splits do occur. The goal is to perform a trimming procedure, aimed to eliminate such splits, at
least for the eigenmodes n 2N, where N is a given set of mode numbers.
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Fig. 6. Modal shapes un;l ðyÞ of a perfect ring (- -/blue) and imperfect ring (LT model: —/red; exact RR solution: þ/black). Imperfection

due to three lumped masses, according to case (iii). Eigenmodes: (a) n ¼ 2, l ¼ 0; (b) n ¼ 2, l ¼ 1; (c) n ¼ 3, l ¼ 0; (d) n ¼ 3,

l ¼ 1; (e) n ¼ 4, l ¼ 0; (f) n ¼ 4, l ¼ 1; (g) n ¼ 5, l ¼ 0; (h) n ¼ 5, l ¼ 1.

P. Bisegna, G. Caruso / Journal of Sound and Vibration 306 (2007) 691–711 705
This goal may be achieved by adding a suitable continuous mass distribution drtrðyÞ to the ring.
Alternatively, following Ref. [12], a suitable number N of point masses fml;trgl¼1...N to be determined may be
added to the ring at locations fYl;trgl¼1...N which, in turn, may be preselected or free (i.e., a priori unknown).

In this section, very simple closed-form formulas to achieve frequency trimming on the eigenmodes n 2N
are presented. In particular, these formulas yield the values of the point masses fml;trg, to be applied to the ring
at the preselected locations fYl;trg, or alternatively the mass distribution drtrðyÞ needed for trimming. The
argument relies on the linear theory proposed in Section 3.2. The quality of the trimming achieved is evaluated
by computing the exact eigenfrequencies of the trimmed ring via the Ritz–Rayleigh method.
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Fig. 7. Perturbation dun;l ðyÞ ¼ un;l ðyÞ � uonðyÞ of the modal shapes of an imperfect ring (LT model: —/red; exact RR solution: +/black;

reference: - -/blue). Imperfection due to three lumped masses, according to case (iii). Amplification of the harmonic distorsion: 2 times with

respect to Fig. 6. Eigenmodes: (a) n ¼ 2, l ¼ 0; (b) n ¼ 2, l ¼ 1; (c) n ¼ 3, l ¼ 0; (d) n ¼ 3, l ¼ 1; (e) n ¼ 4, l ¼ 0; (f) n ¼ 4, l ¼ 1; (g) n ¼ 5,

l ¼ 0; (h) n ¼ 5, l ¼ 1.
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Of course, in order to achieve a trimming, it is necessary, as a first step, to experimentally characterize the
imperfect ring. The experimental measurements yield the imperfect ring eigenfrequencies on;0 and on;1, whose
difference

Don;exp ¼ on;1 � on;0 ¼ don;1 � don;0 (46)

is the modal split (or mistuning). Moreover, they yield the phase orientations of the eigenmodes n 2N. Let
jn;exp be the phase orientation relevant to the lower-frequency (i.e., l ¼ 0) split eigenmode.
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Table 8

Harmonic content jfun;lgkj, k ¼ 0 . . . 9, of the eigenmode un;l relevant to case (iii)

k n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

0 0.0859 0.0147 0.0145 0.0095 0.0492 0.0289 0.0711 0.0774

1 0.1035 0.1093 0.1151 0.0596 0.1004 0.0572 0.1572 0.1437

2 1.0000 1.0000 0.1732 0.0544 0.1657 0.0430 0.1234 0.0921

3 0.0108 0.0034 1.0000 1.0000 0.2126 0.0515 0.1430 0.0629

4 0.0017 0.0002 0.0343 0.0070 1.0000 1.0000 0.2144 0.0790

5 0.0003 0.0002 0.0061 0.0015 0.0537 0.0196 1.0000 1.0000

6 0.0001 0.0001 0.0012 0.0008 0.0101 0.0047 0.0651 0.0397

7 0.0001 0.0001 0.0005 0.0005 0.0017 0.0011 0.0101 0.0126

8 0.0000 0.0000 0.0004 0.0003 0.0015 0.0002 0.0043 0.0049

9 0.0000 0.0000 0.0003 0.0001 0.0015 0.0003 0.0050 0.0020

Normalization: Ao;n ¼ jfun;lgnj ¼ 1. Eigenmodes n ¼ 2; 3; 4; 5: split eigenmode l ¼ 0 [resp., l ¼ 1] on the left [resp., on the right]. LT model

adopted in the computations.

Table 7

Total harmonic distortion coefficient THD (%) relevant to case (iii)

n ¼ 2 n ¼ 3 n ¼ 4 n ¼ 5

LT 12.05 10.98 21.11 8.13 29.48 9.27 33.66 20.99

RR 10.65 10.18 18.84 7.08 24.22 9.35 28.29 18.90

Eigenmodes n ¼ 2; 3; 4; 5: split eigenmode l ¼ 0 [resp., l ¼ 1] on the left [resp., on the right]. LT and RR models adopted in the

computations.
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Following Ref. [5], the trimming procedure here adopted hinges on determining a continuous mass
distribution drexpðyÞ, which, if added to a perfect reference ring Rref , would produce modal mistunings
on;1 � on;0 and phase orientations jn;0 on the eigenmodes n 2N, which coincide with the corresponding
measured quantities Don;exp and jn;exp, respectively. Hence, the mass distribution drexpðyÞ, according to
Eqs. (26) and (24), must satisfy the equations:

Don;exp ¼ oon

1� n2

1þ n2

fdrexpg2n

ro

����
����; n 2N (47)

and

jn;exp ¼
1

2
arg

1� n2

1þ n2

fdrexpg2n

ro

� �
; n 2N, (48)

which yield:

fdrexpg2n ¼ ro

1þ n2

1� n2

Don;exp

oon

e2ijn;exp ; n 2N. (49)

Accordingly, any continuous mass distribution drexpðyÞ whose Fourier coefficients fdrexpg2n, n 2N, are given
by Eq. (49), produces the measured modal mistuning Don;exp and phase orientation jn;exp, n 2N, when
applied to the reference ring Rref . This suggests to model the real imperfect ring as a ring Rmod, constituted by
the reference ring Rref with any such continuous mass distribution drexpðyÞ applied. According to Eq. (25), it
turns out that the eigenfrequency oon ofRref coincides with the average of the eigenfrequencies on;0 and on;1 of
Rmod, provided that drexpðyÞ is chosen with null average (i.e., fdrexpg0 ¼ 0). As a consequence, oon could be
identified with the average of the experimentally measured eigenfrequencies.

The modes n 2N of the ring Rmod can be trimmed, according to the linear model presented in Section 3.2,
by simply adding to Rmod any continuous mass distribution drtrðyÞ, even different from �drexpðyÞ, provided
that its Fourier coefficients fdrtrg2n, n 2N, are the opposite of fdrexpg2n, given by Eq. (49). This suggests that
such a mass distribution drtrðyÞ could trim also the real imperfect ring.
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As a first example, drtrðyÞ could be chosen such that its Fourier coefficients different from those cited above
is zero: accordingly, such a continuous distribution is

drtrðyÞ ¼ �
X
n2N

2ro

1þ n2

1� n2

Don;exp

oon

cos 2ðnyþ jn;expÞ. (50)

Such a distribution is interesting, since it does not affect the eigenmodes naN. Moreover, the total mass to be
added or removed from the ring vanishes. The distribution (50) is a continuous one: hence, it would require a
continuous laser ablation (not to mention the difficulty arising in the region where drtrðyÞ is positive, requiring,
e.g., a preliminary mass deposition, followed by a subsequent laser ablation).

However, among the infinitely many mass distributions drtrðyÞ whose Fourier coefficients are the opposite
of those given by Eq. (49), there exist distributions comprised only by Dirac delta functions, which, on a
physical ground, correspond to point masses to be added or removed from the ring. An easy way to obtain
such distributions is to sample the function drtrðyÞ given in Eq. (50) at N equi-spaced locations: i.e.,
at the angles

yl;tr ¼ yo þ lys; l ¼ 0 . . .N � 1, (51)

where yo is an arbitrary initial sampling angle and ys ¼ 2p=N is the angular sampling period. Setting
nmax ¼ maxN, and observing that the spectrum of the function drtrðyÞ contains spatial circular frequencies up
to 2nmax, according to the Nyquist theorem, it must result:

2p
ys

¼ N42ð2nmaxÞ ¼ 4nmax. (52)

Accordingly, the continuous mass distribution given in Eq. (50) is replaced by the sampled one:

drtr;sðyÞ ¼
2p
N

XN�1
l¼0

drtrðyl;trÞdyl;tr
ðyÞ. (53)

Indeed, the distributions drtr and drtr;s have the same Fourier coefficients, up to the order 2nmax:

fdrtr;sgk ¼ fdrtrgk; jkjp2nmax, (54)

as it is well known. However, for the sake of completeness, a direct proof is here reported. One computes:

fdrtr;sgk ¼
1

2p

Z 2p

0

drtr;sðyÞe
�iky dy ¼

1

N

Z 2p

0

XN�1
l¼0

drtrðyl;trÞdyl;tr
ðyÞe�iky dy

¼
1

N

XN�1
l¼0

Xþ1
p¼�1

fdrtrgpe
ipyl;tr e�ikyl;tr ¼

Xþ1
p¼�1

fdrtrgpe
iðp�kÞyo

1

N

XN�1
l¼0

e2piðp�kÞl=N . ð55Þ

Recalling that fdrtrgp vanishes for jpj42nmax and using Eq. (52) and the well-known identity:

1

N

XN�1
l¼0

e2piql=N ¼
1 if N divides q;

0 if N does not divide q;

(
(56)

Eq. (55) yields Eq. (54): indeed, if fdrtrgp is nonzero, then jpjp2nmax and hence jp� kjp4nmax, so that N

divides jp� kj only when p ¼ k.
The sampled mass distribution given in Eq. (53) corresponds to the following trimming masses:

ml;tr ¼
2pR

N
drtrðyl;trÞ; l ¼ 0 . . .N � 1, (57)

which recalling Eq. (50), can be calculated via the following explicit formula:

ml;tr ¼ �
2Mo

N

X
n2N

1þ n2

1� n2

Don;exp

oon

cos 2ðnyl;tr þ jn;expÞ; l ¼ 0 . . .N � 1. (58)
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Of course, trimming using the above masses, located at positions yl;tr, would alter any trimming or splitting
condition prevailing on the eigenmodes n4nmax.

In some applications the number N of trimming masses given by Eq. (52) may be too high. However, it is
possible to achieve a trimming even using fewer masses, provided that:

N does not divide 4n; 8n 2N; and

N does not divide 2n	 2m; 8n;m 2N; nam. ð59Þ

Condition (59) was derived in Ref. [12] in the particular situations of single-mode or dual-mode trimming. It is
shown here that it has a general validity, since it suffices to achieve a trimming on any arbitrary number of
modes.

To this end, it is observed that condition (54) can be replaced by the following weaker condition:

fdrtr;sgk ¼ fdrtrgk; 	k 2 2N. (60)

Moreover, reasoning as in Eq. (55), and using Eq. (56), it turns out that:

fdrtr;sgk ¼
Xþ1

r¼�1

fdrtrgkþrNe
irNyo . (61)

Recalling that the base spectrum fdrtrgp is different from zero only for 	p 2 2N, condition (59) implies that
for 	k 2 2N the only nonvanishing contribution to the sum over r in Eq. (61) is due to r ¼ 0. Hence Eq. (60)
holds and the trimming is achieved.

In passing, it is here observed that a target trimming [12], i.e., the choice of the eigenfrequency on of one
trimmed eigenmode n 2N can be easily achieved. Indeed, according to Eq. (25), it suffices to add the constant
term

�2ro

on

oon

� 1

� �
(62)

to the right-hand side of Eq. (50), which amounts to increase each of the trimming masses ml;tr given in Eq.
(58) by the quantity:

�
2Mo

N

on

oon

� 1

� �
. (63)

On the other hand, if no target trimming is required, an arbitrary constant term may be added to the right-
hand side of Eq. (50), i.e. each trimming mass ml;tr may be increased (or decreased) by the same arbitrary
quantity, without modifying the achieved trimming condition. This freedom may be used, e.g., to have all the
trimming masses positive (or negative), if this situation is preferred for easiness of manufacturing.

In order to validate the proposed trimming procedure, the imperfect ring described in case (iii) of Section 5
is here considered. Eigenmodes n ¼ 2 and 3 are trimmed by using N ¼ 13 or N ¼ 7 equispaced trimming
masses, located at positions 2lp=N, l ¼ 0 . . .N � 1. The required trimming masses are computed through the
explicit formula (58) and are reported in Table 9. The outcome of the trimming procedure is reported in
Table 10, where the trimmed eigenfrequencies, which are degenerate according to the LT model, are compared
Table 9

Outcome of the trimming procedure based on LT and FT [11,12] models, applied to the imperfect ring of case (iii): trimming masses

[10�2 kg]

Theory # m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13

LT 13 �5.18 3.08 2.20 �5.94 5.33 �2.98 3.46 �7.28 10.2 �8.64 4.30 �1.98 3.44

LT 7 �9.62 10.6 11.9 7.67 2.42 �16.6 �6.31

FT [12] 7 �20.6 19.6 28.5 0.9 �1.5 1.5 �0.9

FT [11] 2 �52.3 �39.8

Trimmed eigenmodes n ¼ 2; 3. Different number of masses considered.
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Table 10

Outcome of the trimming procedure based on LT and FT [11,12] models, applied to the imperfect ring of case (iii): trimmed

eigenfrequencies (Hz)

Theory # masses n ¼ 2 n ¼ 3

LT 13 35.373 100.05

RR check 35.417 35.441 100.09 100.20

Residual mistuning 0.068% 0.115%

LT 7 35.373 100.05

RR check 35.491 35.542 100.19 100.77

Residual mistuning 0.144% 0.579%

FT [12] 7 34.781 98.375

RR check 34.897 34.950 98.484 99.179

Residual mistuning 0.152% 0.706%

FT [11] 2 37.602 106.36

RR check 37.638 37.709 106.16 107.13

Residual mistuning 0.189% 0.919%

Exact eigenfrequencies (Hz) and residual mistuning (%) computed by the RR method also reported. Trimmed eigenmodes n ¼ 2; 3.
Different number of masses considered.

P. Bisegna, G. Caruso / Journal of Sound and Vibration 306 (2007) 691–711710
to the exact eigenfrequencies supplied by the RR method. The residual percentage mistuning, defined as
jon;1 � on;0j=on;0, is also indicated. For the sake of comparison, results obtained in Ref. [12], Table 7
(7 equally spaced masses), and Ref. [11], Table 3 (two masses placed at y1 ¼ 3:95� and y2 ¼ 144:31�), relevant
to the same imperfect ring, are also reported.

The results in Table 10 show that the proposed trimming procedure based on the LT method yields
satisfactory trimming conditions using both 13 and 7 trimming masses. As expected, the fewer masses are
employed, the greater is the residual mistuning. Indeed, when fewer masses are used, higher values of masses
are required and, as a consequence, the linear theory has a reduced accuracy in estimating the
eigenfrequencies. Equivalent results are obtained by using the LT or FT models with the same number of
masses. The closed-form expression (57) for the trimming masses, valid for any set of modes to be trimmed,
makes especially convenient the use of the LT model.
7. Conclusions

The dynamical behavior of linearly elastic imperfect rings was studied in this paper. The imperfections were
modeled as perturbations of the linear mass density and the in-plane bending stiffness of a perfect ring.

A linear theory and an enhanced theory were derived. The former yielded closed-form expressions for both
the eigenfrequencies and the eigenmodes, and turned out to be accurate for sufficiently small imperfections.
The latter turned out to be accurate even for large imperfections, but required an iterative solving procedure.

Some case-study problems of technological interest were considered, in order to validate the proposed
theories against the results provided by the Ritz–Rayleigh method. The numerical examples showed that the
eigenmodes of an imperfect ring may significatively deviate from a sinusoidal shape, exhibiting localization of
vibration amplitude.

The proposed linear theory was applied to the trimming problem of an imperfect ring. A simple, closed-
form expression was presented for computing the masses, to be placed at equispaced positions, able to trim
any selected number of eigenmodes. The quality of the achieved trimming was tested by evaluating, via the
Ritz–Rayleigh method, the residual mistuning between the trimmed eigenfrequencies. Finally, a rule found in
Ref. [12] concerning invalid combinations of masses and modes for single- or dual-mode trimming, was
generalized to the multi-mode trimming case.
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